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Solving the bound-state Schro¨dinger equation by reproducing kernel interpolation

Xu-Guang Hu, Tak-San Ho, and Herschel Rabitz
Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009

~Received 16 November 1998!

Based on reproducing kernel Hilbert space theory and radial basis approximation theory, a grid method is
developed for numerically solving theN-dimensional bound-state Schro¨dinger equation. Central to the method
is the construction of an appropriate bounded reproducing kernel~RK! La(ir i) from the linear operator
2¹ r

21l2 where¹ r
2 is theN-dimensional Laplacian,l.0 is a parameter related to the binding energy of the

system under study, and the real numbera.N. The proposed~Sobolev! RK La(r ,r 8) is shown to be a
positive-definite radial basis function, and it matches the asymptotic solutions of the bound-state Schro¨dinger
equation. Numerical tests for the one-dimensional~1D! Morse potential and 2D Henon-Heiles potential reveal
that the method can accurately and efficiently yield all the energy levels up to the dissociation limit. Compari-
sons are also made with the results based on the distributed Gaussian basis method in the 1D case as well as
the distributed approximating functional method in both 1D and 2D cases.

PACS number~s!: 02.70.2c, 02.60.Lj, 02.60.Ed, 03.65.Ge
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I. INTRODUCTION

The function approximation scheme from which differe
methods can be characterized is of fundamental importa
in numerically solving ordinary or partial differential equ
tions. Two commonly used function approximation schem
are interpolation~e.g., polynomial interpolation and splin
interpolation, etc.! and basis function expansion~e.g., Fou-
rier series and generalized Fourier series, etc.!. The former
are identified as grid methods which are either global or
cal, whereas the latter are referred to as spectral meth
which are global. Both global and local approaches h
their own strong and weak points depending on the pract
application. Generally speaking, global approaches suc
Fourier series, orthogonal polynomial expansions and p
nomial interpolation produce more accurate results than lo
ones in comparable settings. However, local approaches
as finite element and finite difference are more flexible a
are easier to implement than global ones for systems w
complex boundary conditions. In this paper we will focus
the interpolation scheme for function approximations in so
ing the bound-state Schro¨dinger equation.

The quality of an interpolation scheme is closely rela
to not only the nature of interpolator but also the total nu
ber of interpolating points~i.e., grid points! and their distri-
bution. For polynomial interpolators, grid point distributio
can in principle be quite arbitrary as long as they are distin
Nevertheless, Shannon’s sampling theorem based on a
cial interpolation function sin(x)/x can only accept evenly
spaced grid points using the zeros of sin(x) on the real axis.
In recent years, there has been considerable interest in
methods for solving the time-dependent or time-independ
Schrödinger equations@1#, among which are the discret
variable representation~DVR! @2–8#, the Fourier pseu-
dospectral method@9,10#, the distributed Gaussian~DGB!
basis method@11–15#, and the distributed approximatin
functionals~DAF! @16,17,19#.

DVR and Fourier pseudospectral methods using ortho
nal basis sets are well defined in one-dimensional ca
Both methods necessitate quadrature points, i.e., zeros o
thogonal basis functions~e.g., orthogonal polynomials an
PRE 611063-651X/2000/61~2!/2074~12!/$15.00
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trigonometric functions, etc.!, as their interpolating noda
points. For more than one-dimensional cases, however,
tensor product form of one-dimensional basis sets are usu
adopted. Although the tensor product form is a conceptu
simple way to construct multidimensional orthogonal ba
sets, it is neither efficient nor accurate as a numerical sch
because the total number of quadrature points will drastic
increase with dimension, thus causing computer stora
code execution time, and numerical instability problems.

Shizgal @6# and Schneider@7# have modified the DVR
methods by using one-dimensional nonclassical polynomi
Both methods have a notable feature that builds the cor
boundary conditions and asymptotic behavior of the sys
under study into their polynomial constructions and, thus
only reduces the number of quadrature points employed
also raises the accuracy in numerical calculations. Notw
standing these attractive features, for more than o
dimensional problems, both methods need to employ the
sor product ansatz.

The DAF method developed by Kouri and co-worke
@16,17,19#, is another systematic way to incorporate
~quadrature! weight function corresponding to a classic
polynomial into function approximations over the distribut
grids. The typical interpolating and noninterpolating DA
procedures employ Hermite polynomials and their Gauss
weight and have been successfully applied to solve one-
two-dimensional bound-state Schro¨dinger equations and
one-dimensional Fokker-Planck equations@16–18#. In prin-
ciple, the DAF method as an off-spring of the moving lea
square treatment, can use any kind of grid point distributio
but in practice, only uniformly distributed ones along ea
dimension have been well explored to avoid the need to
vert a matrix formed on the grids@19#. Otherwise, the DAF
method would become computationally costly for more th
one-dimensional problems because of the matrix invers
As a result, the tensor product form is the only viable cho
for the DAF method to be extended to multidimensional a
plications.

The DGB method has been widely used in molecu
vibration-rotational calculations@11–15#. One advantage o
using the Gaussian function exp(2lir i2)(l.0) as an inter-
2074 ©2000 The American Physical Society
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PRE 61 2075SOLVING THE BOUND-STATE SCHRO¨ DINGER . . .
polation basis function on grids is that the relevant poten
matrix elements can be accurately evaluated using low o
Gauss-Hermite quadratures. Furthermore, the grid points
be flexibly distributed over configuration regions where t
amplitude of the wave function is significant. This latter fe
ture allows for the symmetry of the system under study to
built into the grid point distribution. Finally, the Gaussia
function, similar to the Sobolev reproducing kernel~RK!
function La(ir i) introduced in the paper, is a radial bas
function with respect to its argument. All radial basis fun
tions can be arbitrarily distributed, thus, allowing for a gre
reduction of the total number of grid points to be employ
in the calculations.

The reproducing kernel Hilbert space~RKHS! method has
been shown to be a powerful tool for constructing accur
analytical potential energy hypersurfaces@20–22# and for
solving the bound-state Schro¨dinger equation@23#. In the
former case the RKHS and its associated RK were c
structed from Taylor’s formula with exact remainde
whereas in the latter case they were constructed from
Green’s function corresponding to the bound-state Sch¨-
dinger equation. These two RK’s belong to a class of gen
alized spline functions associated with ordinary linear diff
ential operators, but subject to different boundary conditio
@24–26#. In this paper we pursue the use of the RKH
method for solving the bound-state Schro¨dinger equation by
generalizing the previous definition of the RK@23#. The
RKHS method along with the interpolation properties of
dial basis functions@25,27,28# underlies this developmen
The central idea of the method is to define a Hilbert sp
with a suitable inner product from which an appropria
positive-definite RK can be constructed uniquely@26#. In this
paper, anN-dimensional RKLa(ir i) is constructed from the
linear operator2¹ r

21l2 where¹ r
2 is theN-dimensional La-

placian,l.0 is a parameter related to the binding energy
the system under study, and the real numbera.N. The pro-
posed ~Sobolev! La(ir i) RK is shown to be a positive
definite radial basis function~RBF!, and it matches the
asymptotic solutions of the bound-state Schro¨dinger equa-
tion.

The specific radial property of the Sobolev RKLa(ir i)
can be incorporated into an efficient and accurate interp
tion scheme for approximating the bound-state wave fu
tion c(r ). Recently, RBF interpolation has attracted a gr
deal of interest in approximation theory for multivariate sc
tered data interpolation@27,28#. There are three salient fea
tures in using this theory for the grid method:~1! the only
restriction required for the distribution of grid points is th
every point must be distinct from one another.~2! The RBF’s
need to be symmetric and strictly or conditionally positiv
definite. Each RBF always generates an RKHS with a pro
inner product such that the reproducing property holds@33#.
~3! A function can be optimally recovered from scatter
data by the RBF interpolation@27,28,33,34#.

The paper is organized as follows. In Sec. II the unde
ing principle of the RKHS method and its applications
scattered data interpolation and function approximation
presented for general multidimensional cases. In Sec. III
numerical implementation is illustrated by solving the Sch¨-
dinger equation for a one-dimensional~1D! Morse potential
as well as a two-dimensional Henon-Heiles potential. Co
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parisons are also made with the results based on the dis
uted Gaussian basis method in the 1D case as well as
distributed approximating functional method in both 1D a
2D cases. Concluding remarks are given in Sec. IV.

II. THEORY

A. RKHS and RK

Without loss of generality we start with th
N-dimensional Schro¨dinger equation in atomic units:

H 2(
i 51

N
1

2m i

]2

]xi
2

1V~x1 ,x2 , . . . ,xN!J c~x1 ,x2 , . . . ,xN!

5Ec~x1 ,x2 , . . . ,xN!. ~1!

The total energy of the systemE is assumed to be negativ
for the bound-state problems considered in this paper.
adopting the coordinateszi5Am ixi( i 51,2, . . .N), Eq. ~1!
reduces to

~2¹ r
21l2!c~r !522V~r !c~r !, ~2!

where l2522E.0 and ¹ r
25( i 51

N (d2/dzi
2) with r being

understood to designate aN-dimensional (ND) vector for
(z1 ,z2 , . . . ,zN) collectively. Based on the Green’s functio
G(r ,r 8) for the linear operatorM̂ (r )52¹ r

21l2, Eq.~2! can
be readily transformed into an integral equation

c~r !5E
RN

dr 8G~r ,r 8!@22V~r 8!#c~r 8!, ~3!

where RN denotes the entireND Euclidean space. The
positive-definite Green’s functionG(r ,r 8) satisfies the cor-
rect bound-state boundary conditions and it has an exp
form expressed in terms of the modified Bessel function
the third kindKn(z)

G~r ,r 8!5
1

l S l

2p D N/2KN/221~lir2r 8i !

ir2r 8iN/221
, ~4!

wherei•••i represents the Euclidean norm, i.e., the Eucl
ean distance. Within the framework of Eqs.~3! and~4! Kalos
has carried out Monte Carlo calculations for the ground s
of some few-body systems@29#. The linear operatorM̂ (r )
52¹ r

21l2 with l2.0 and its Green’s functionG(r ,r 8)
also underlie the RKHS method presented below for gen
multidimensional bound-state problems. We first pres
some basic concepts involved in the RKHS and RK@25,26#.

Let H be a Hilbert space formed by a class of real co
tinuous bounded functions. The Hilbert spaceH is said to be
a reproducing kernel Hilbert space~RKHS! if there exists a
real symmetric and positive-definite functionK(t,t8) which,
for every t8, K(t,t8) as a function oft, belongs toH, and
possesses the following reproducing property

f ~ t !5^ f ~ t8!,K~ t,t8!& t8 ,
~5!

K~ t,s!5^K~ t,t8!,K~s,t8!& t8 ,
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where f (t) is a function inH and K(t,t8) is called the re-
producing kernel~RK! of H. The explicit definition of the
nature of the inner product̂•••,•••& t8 will depend on the
particular linear space involved, and the subscriptt8 indi-
cates that the inner product is performed over functions ot8.
Intuitively, a reproducing kernel Hilbert space is one whi
contains a kernel functionK(t,t8) playing a role similar to
the Dirac delta functiond(t2t8). However, the Dirac delta
function is not truly a reproducing kernel. For example,
an L2 Hilbert space formed by a class of square integra
functions, although the Dirac delta functiond(t2t8) pos-
sesses the reproducing property*dt8d(t2t8) f (t8)5 f (t), it
does not satisfy the criterion that, for everyt8, d(t2t8) as a
function of t belongs to the same Hilbert space. It can
shown@26# that, to every RKHS there corresponds a uniq
RK and, conversely, given a real symmetric and positi
definite functionK(t,t8) one can construct a unique RKH
with K(t,t8) as its RK. In general, the construction of
RKHS is dependent on both the class of functions formin
linear space and the definition of the associated inner p
uct. To establish a RKHS for solving the bound-state Sch¨-
dinger equation, the associated RK must be at least tw
continuously differentiable and square integrable~in accor-
dance with the bounded nature of bound-state wave fu
tions!.

For an illustration, we first consider the construction
suitable RK’s for the 1D bound-state case. It is easy to sh
that by the use of the 1D Green’s functionG(z,z8) of the
linear operatorM̂ (z8)52d2/dz21l2, the kernel function

L~z,z8!5E
2`

1`

dz9G~z,z9!G~z9,z8!

5
1

4l3
~11luz2z8u!e2luz2z8u, ~6!

is square integrable for any givenz ~or z8) as well as real
symmetric positive definite. Furthermore, the action of
operatorM̂ (z8) on theL(z,z8) yields

M̂ ~z8!L~z,z8!5E
2`

1`

dz9G~z,z9!$M̂ ~z8!G~z9,z8!%

5E
2`

1`

dz9G~z,z9!d~z92z8!5G~z,z8!.

~7!

Here, we have used the propertyM̂ (z8)G(z9,z8)5d(z9
2z8). If the parameterl in Eq. ~6! is determined by the
Schrödinger Eq.~2!, then, the integral Eq.~3!, can be con-
verted, in terms of Eqs.~2! and ~7!, to another important
form

c~z!5E
2`

1`

dz8$M̂ ~z8!L~z,z8!%$M̂ ~z8!c~z8!%. ~8!

We remark that this relation should not be taken as an i
gral equation for determining the wave functionc(z) as it
does not involve the potential of the system. It is merely
identity satisfied by anyc(z) that solves the Schro¨dinger Eq.
r
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~2! with any acceptable potentialV(z). Of paramount impor-
tance is that Eq.~8! enables one to define an appropria
RKHS for the 1D bound-state problem, as seen below.

Suppose that a class of square-integrable continuous f
tions$c,f, . . . %, forms a linear Hilbert space which endow
an inner product and norm defined as

^f,c&5E
2`

1`

dz$M̂ ~z!f~z!%* $M̂ ~z!c~z!%,

^c,c&5ici2,`. ~9!

where the * means the Hermitian conjugate. The RK cor
sponding to this Hilbert space is uniquely given byL(z,z8)
defined in Eq.~6!. The reproducing property can be eas
seen from the following manipulations:

c~z!5^L~z,z8!,c~z8!&z8

5E
2`

1`

dz8$M̂ ~z8!L~z,z8!%* $M̂ ~z8!c~z8!%

5E
2`

1`

dz8G~z,z8!* $M̂ ~z8!c~z8!%

5E
2`

1`

dz8$M̂ ~z8!G~z,z8!%* c~z8!

5E
2`

1`

dz8d~z2z8!c~z8!, ~10!

where the Hermiticity of the operatorM̂ (z) has been used
Note that the last equality does not imply that thed function
is a RK because the definition of the inner product is diff
ent from Eq.~9! and the usualL2 Hilbert space withM̂ (z)
51 is not a RKHS. In general, a null linear subspa
spanned by the set of functions fulfilling the equati
M̂ (z) f (z)50 needs to be added to the RKHS for comp
tion. However, here this null space only has the trivial so
tion f (z)50 satisfying square integrability.

It is easy to see that the Hilbert space endowed with
inner product~9! will reduce to the usualŁ2 Hilbert space
endowed with the inner product*2`

1`dzf* (z)c(z) by taking

M̂ (z)51. Although both Hilbert spaces are all composed
square-integrable functions, the present~Sobolev! Hilbert
space excludes functions with differentiability of less th
second order, such as the Heaviside step function, thus
posing more stringent smoothness conditions on its mem
than its L2 counterpart. The solutions of the bound-sta
Schrödinger equation are required to be at least twice c
tinuously differentiable and will definitely fall into the
present Hilbert space which is a subspace of the usuaL2

Hilbert space.
In a previous paper@23# the above 1D RK has bee

adopted for variationally solving the 1D bound-state Sch¨-
dinger equation in conjunction with a grid method. The n
merical results showed that the RKL(z,z8) defined in Eq.
~6! as an interpolation basis can yield accurate energy le
up to the dissociation limit for the Morse and Po¨schl-Teller
potentials. A major drawback with the above RK is its la
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of differentiability to high orders, as a result, more gr
points are needed in the corresponding calculations. Ne
theless, the above formulation is closely related to
asymptotic formM̂ (z) of the bound-state Schro¨dinger opera-
tor and the associated Green’s functionG(z,z8). This prop-
erty renders the RKHS method accurate even up to the
sociation limit. Unfortunately, the above procedure f
constructing the 1D RKHS and its associated RK canno
directly extended beyond the 1D case because the resu
RK’s are not necessarily square integrable~as can be seen
from the following development and the Appendix!.

In the following we describe a different procedure bas
on Fourier analysis that enables the construction of suita
RK’s for general multidimensional bound-state problem
We first define a positive-definite operatorQ̂(r )5M̂ (r )a/4

5(2¹21l2)a/4 with l2.0, a.0 and assume the exis
tence of its Fourier transform@30# through the relation

Q̂~r !c~r !5M̂ ~r !a/4c~r !5
1

~2p!NERN
dk~l21k2!a/4

3c̃~k!eik"r, ~11!

where c̃ is the Fourier transform ofc. The operatorQ̂(r )
thus defined is Hermitian provided thatQ̂(r )c(r ) is square
integrable, leading to a real Hilbert~Sobolev! spaceHa
which is endowed with the inner product and norm

^f,c&5E
RN

dr$Q̂~r !f~r !%* $Q̂~r !c~r !%

5E
RN

dr$M̂ ~r !a/4f~r !%* $M̂ ~r !a/4c~r !%

5
1

~2p!NERN
dkf̃~k!* c̃~k!~l21k2!a/2

^c,c&5ici2,`, ~12!

for any functionsc andf belonging toHa . TheL2 square-
integrability of Q̂(r )c(r ), while ensuring that ofc in the
present Hilbert spaceHa , removes those functions for whic
Q̂(r )c(r )’s are notL2 square integrable from the usualL2

Hilbert space. Once the inner product is given, we can p
ceed to construct the unique RK associated with Hilb
spaceHa .

There are two ways to construct bounded RK’s with t
restriction ofa.N ~to be addressed below!. One approach is
to follow the same procedure as the above 1D example
first finding the Green’s function of the operatorQ̂(r )
5(2¹ r

21l2)a/4 with proper bound-state boundary cond
tions and then convolving the Green’s function, as in Eq.~6!,
to achieve the desired RK. This way is conventional, but
straightforward as mentioned previously. Another appro
presented below is much easier and conceptually more
pealing.

Let La(r ,r 8) be the required RK associated with th
above Hilbert spaceHa andL̃a(r ,k) be its Fourier transform
related by
r-
e

is-

e
ant

d
le
.

-
rt

y

t
h
p-

L̃a~r ,k!5E
RN

dr 8La~r ,r 8!e2 ik"r8. ~13!

The reproducing property ofLa(r ,r 8) under the inner prod-
uct ~12! will manifest itself, if and only if

L̃a~r ,k!5~l21k2!2a/2e2 ik•r. ~14!

Thus, any functionc(r ) belonging toHa can be written as

c~r !5^La~r ,r 8!,c~r 8!& r8

5
1

~2p!NERN
dkL̃a~r ,k!* c̃~k!~l21k2!a/2

5
1

~2p!NERN
dkc̃~k!eik•r. ~15!

The last equality in Eq.~15! is just the inverse Fourier trans
form of the functionc̃(k). As a result, the required RK ca
be directly constructed by the inverse Fourier transform
L̃a(r ,k) as

La~r ,r 8!5
1

~2p!NERN
dkL̃a(r 8,k)eik"r

5
1

~2p!NERN
dk

eik•(r2r8)

~l21k2!a/2

5
1

2~N1a22!/2pN/2la2NG~a/2!

3~lir2r 8i !(a2N)/2K (N2a)/2~lir2r 8i !, ~16!

where G is the Gamma function andK (N2a)/2 denotes the
modified Bessel function of the third kind of order (N
2a)/2.

The RK La(r ,r 8) is an important kernel function which
was first investigated in potential theory where it is term
the Bessel potential due toK (N2a)/2 @31#. The Appendix lists
some of its basic properties relevant to this paper. In pot
tial theory, the order parametera in the kernel function
La(r ,r 8) can be any positive real number. However, t
Hilbert space associated with bound-state problems con
of the set ofL2 square-integrable functions and, according
the corresponding RK also must beL2 square integrable
Equations~A1! and~A4! show that the conditiona.N must
be fulfilled for the kernel functionLa(r ,r 8) to be bounded
and L2 square integrable. The positive definiteness of
symmetric kernelLa(r ,r 8) is self-evident in the sense o
Moore @26# @also see Eq.~19!#. It is important to point out
that the value of the RKLa(r ,r 8) depends only on the rela
tive distance of two distinct pointsr andr 8, i.e., it is a radial
basis function~RBF! and thus is rotationally invariant. Here
after we adopt the formLa(ir2r 8i), under the name Sobo
lev RK of ordera due to its relation to the operatorQ̂a(r )
@27#, to indicate this radial property. The completion of th
RKHS associated withLa(ir2r 8i) can be achieved with the
same argument given for the 1D case@see the discussion
below Eq.~10!#. Moreover, an important feature of the Sob
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lev RK La(ir2r 8i) is its high-order differentiability result-
ing from an appropriate choice of the order parametea
.N. Finally, it is easy to see that the previous 1D example
a special case of the new generalized version witha54 and
N51.

B. Function approximation by radial basis functions

In what follows we will show an optimal feature of inte
polation and function approximation in terms of the RB
La(ir2r 8i) and its corresponding RKHSHa . Consider an
arbitrary set of M distinct scattered points X
5$r1 , r2 , . . . ,r M% in RN and the corresponding scattere
data F5$ f (r1), f (r2), . . . ,f (r M)% for a function f PHa .
Since the Sobolev RKLa(ir2r 8i) for any fixed r 8 ~or r )
belongs toHa , its translates$La(ir2r i i)% i 51

M , over the
data setX, span a data-dependent subspace ofHa . The in-
terpolantSf to f can then be constructed via the represen
tion

Sf~r !5(
i 51

M

ciLa~ ir2r i i !, ~17!

where the real coefficientsc1 ,c2 , . . . ,cM solve the linear
system

f ~r j !5(
i 51

M

ciLa~ ir j2r i i !, j 51,2, . . . ,M , ~18!

provided that the symmetric interpolation matrix$La(ir j
2r i i)% is nonsingular. It has been shown that as long as
RBF La(ir2r 8i) is positive-definite in the sense of Moor
i.e., for any set ofM complex numbers$ai% i 51

M ,

(
i , j 51

M

aj* La~ ir j2r i i !ai5 (
i , j 51

M

aj* ai^La~ ir2r j i !,

3La~ ir2r i i !& r

5K (
i 51

M

aiLa~ ir2r i i !,(
i 51

M

aiLa

3~ ir2r i i !L
r

>0, ~19!

where the reproducing property

^La~ ir2r j i !,La~ ir2r i i !& r5La~ ir j2r i i ! ~20!

has been used in the RKHSHa , then the interpolation ma
trix is always nonsingular and thus Eq.~18! is solvable
@27,28#. Moreover, for an arbitrary interpolantWf to f of the
form

Wf~r !5(
i 51

M

f ~r i !ui~r !, ~21!

where the scattered data setF is the same as that used in E
~18! and$ui(r )% i 51

M is an arbitrary set of linearly independe
square integrable functions, Schaback@33# has shown that
the error bound for this general interpolation can be given
s

-

e

y

u f ~r !2Wf~r !u<i f iHa
i«~r ,u,X!iHa

. ~22!

Here i•••iHa
indicates the norm inHa determined by the

inner product~12!, and«(r ,u,X) represents the error func
tional whose norm can be explicitly written as

i«~r ,u,X!iHa

2 5La~0!22(
i 51

M

ui~r !La~ ir2r i i !

1 (
i , j 51

M

ui~r !uj~r !La~ ir j2r i i !. ~23!

This formula allows for comparisons among various interp
lants. To this end we can ask for an optimal choice of the
$ui(r )% i 51

M that minimizes Eq.~23!. The optimal solution
ui

s(r ) can be obtained by taking the variation of Eq.~23!, i.e.,
di«(r ,u,X)iHa

2 50, and this results in the linear system f

ui
s(r )

(
j 51

M

La~ ir j2r i i !ui
s~r !5La~ ir2r j i !, j 51,2, . . . ,M .

~24!

SinceLa(ir2r 8i) is positive-definite, as described in Se
II A, Eq. ~24! is solvable and its solution is unique. As
result, the optimal solution is found to be

ui
s~r !5 (

k51

M

~La
21! ikLa~ ir2r ki !, i 51,2, . . . ,M ,

~25!

where (La
21) ik’s are the elements of the inverse interpolati

matrix $La(ir j2r i i)%. It is clear thatui
s(r )’s fall into the

subspace spanned by the translates of$La(ir2r i i)% i 51
M and

certainly satisfy the Lagrangian type interpolation conditio
~i.e., cardinal condition!

ui
s~r j !5d i j , i , j ,51,2, . . . ,M , ~26!

where d i j is the Kronecker delta. Substituting this optim
solution Eq.~25! back into Eq.~21!, we find that the genera
interpolant Wf(r ) becomes equivalent to the interpola
Sf(r ) in Eq. ~17!, as can be seen from the following

Wf~r !5(
i 51

M

f ~r i !ui
s~r !5(

i 51

M

f ~r i !(
k51

M

~La
21! ikLa~ ir k2r i !

5 (
k51

M

ckLa~ ir2r ki !5Sf~r !, ~27!

whereck5( i 51
M f (r i)(La

21) ik is simply the unique solution
of Eq. ~18!.

We come to the important conclusion that the interpol
Sf(r ) by the RBFLa(ir2r 8i) to scattered data is the uniqu
minimizer of the error bound Eq.~22! among all general
interpolantsWf(r )’s. Note that the error bound Eq.~22! is in
reference to the RKHSHa which requires thatQ̂a(r ) f be
square integrable~see Sec. II A!.
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III. NUMERICAL IMPLEMENTATION

This section describes the computational details for so
ing the bound-state Schro¨dinger equation by using the Sobo
lev RK La(ir2r 8i). The underlying principle is to use th
Sobolev RKLa(ir2r 8i) associated with the RKHSHa to
approximate the wave functionc(r ). There are two signifi-
cant differences between the Sobolev RKLa(ir2r 8i) and
the Gaussian function exp$2l(r2r 8)2%(l.0) as interpola-
tion bases. For fixed parametera.N, La(ir2r 8i) is fi-
nitely continuously differentiable while exp$2l(r2r 8)2%(l
.0) is infinitely continuously differentiable. Numerical ex
periments have shown@27# that the condition number, de
fined as the ratio of largest and smallest eigenvalues of
interpolation matrix in Eq.~18!, is generally large for infi-
nitely differentiable~smooth! radial basis functions such a
the Gaussian, when compared to finitely differentia
~smooth! ones such as the Sobolev RK. The larger the c
dition number is, the worse the approximation becom
Moreover, for general bound-state problems with the pot
tial having the propertyV(r )→0 at ir i→`, the correct
asymptotic behavior of solutions of the Schro¨dinger equation
has been explicitly built into the Sobolev RK, and the para
eter l appearing inLa(ir2r 8i) is related to the energy
cutoff because the operatorM̂a(r )52¹ r

21l2 @see Eq.~2!#
is the asymptotic form of the Hamiltonian at large distanc
However, the Gaussian function does not possess this p
erty.

In general, the exact values of wave functionc(r ) to be
sought are not known on the grid points, nevertheless,
interpolant Sf(r ) as an expansion of data dependent~i.e.,
distributed! Sobolev RKLa(ir2r i i), i 51,2, . . . ,M , can be
considered as an ansatz for the wave functionc(r ). To de-
termine the expansion coefficients$ci% of c(r ), instead of
using the linear system Eq.~18!, we can invoke the conven
tional Rayleigh-Ritz variational principle and solve the fo
lowing linear system:

(
j 51

M

~Hi j 2ESi j !cj50, i 51,2, . . . ,M , ~28!

whereHi j 5Ti j 1Vi j andSi j are the Hamiltonian and overla
matrix elements, respectively. The solution of the gene
ized linear eigenvalue problem in Eq.~28! will give the ex-
pansion coefficients and corresponding energy eigenval
As with other grid methods, the number of energy levels
Eq. ~28! can be determined by properly setting an ene
cutoff. The overlap matrix elementSi j and the kinetic matrix
elementTi j can be easily worked out through the Four
transform of the Sobolev RK. In terms of the definitions
Si j andTi j , we obtain their closed forms

Si j 5CmE
RN

drLa~ ir2r i i !* La~ ir2r j i !

5
Cm

~2p!NERN
dk

eik•(r i2r j )

~l21k2!a
5CmL2a~ ir i2r j i ! ~29!

and
-

e

e
-

s.
-

-

.
p-

e

l-

s.
f
y

f

Ti j 52
Cm

2 E
RN

drLa~ ir2r i i !* ¹ r
2La~ ir2r j i!

5
1

2

Cm

~2p!NERN
dk

k2eik•(r i2r j )

~l21k2!a
5

Cm

2
@L2a22~ ir i2r j i !

2l2L2a~ ir i2r j i !#, ~30!

whereCm5() i 51
N Am i)

21.
The remaining part of the present method involves

evaluation of the potential matrix elementsVi j , which is
generally more cumbersome when compared to the DVR
other pseudospectral methods, or even the DGB. Howe
in terms of an intergral representation

La~ ir2r 8i !5
1

2NpN/2la2NG~a/2!
E

0

`

dww(a2N)/221

3expS 2w2
l2~r2r 8!2

4w D ~31!

for the Sobolev RK, these matrix elements can be con
niently expressed as the following integral:

Vi j 5CmE
RN

drV~r !La~ ir2r i i !* La~ ir2r j i !

5BE
0

p/2

dw sina21~2w!E
0

`

dww(2a2N)/221

3expS 2w2
l2~r i2r j !

2

4w D
3E

RN
dre2l2r2

V@rAwsin~2w!1r isin2~w!

1r jcos2~w!#, ~32!

where B5Cm /@2N1a22pNl2a22NG(a/2)2#, which can be
analytically integrated for any polynomial potential. Expli
itly, Vi j will be a combination of the Sobolev RK’s of dif
ferent orders@see, e.g., Eq.~38!#.

In general, the evaluation of non-polynomial potent
matrix elements requires numerical integration. Howev
unlike most existing grid methods, e.g., DVR and other ps
dospectral methods, which assume fixed quadrature p
distributions, the RBF based methods have no restriction
the grid point distributions as long as the condition numb
of the associated interpolation matrix$La(ir i2r j i)% is nu-
merically acceptable. Consequently, we can judiciously
range the grid points to match the symmetry of the poten
and to have the significant regions covered by denser po
This added freedom of distributing grid points can lead to
substantial reduction of the total number of grid points us
in the calculations, and thus reduce the computational c
while still maintaining the desired numerical accuracy,
demonstrated in the following 1D and 2D examples.

Finally, we remark that the accuracy and efficiency of t
present method depends on three factors:~1! the order pa-
rametera which determines the size of the RKHSHa to be
used in the formulation of a bound-state problem and
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2080 PRE 61XU-GUANG HU, TAK-SAN HO, AND HERSCHEL RABITZ
exponential parameterl of the RK La(ir2r 8i) which is
connected with the energy cutoff,~2! the number of the grid
points which defines the size of a subspace ofHa constructed
from placing the Sobolev RK’s on grids,~3! the distribution
of grid points. All three factors are implicit in the interpola
tion condition Eq.~18!, and hence the condition number
the interpolation matrix becomes a key measure for num
cal accuracy and stability.

A. The 1D Morse potential

The numerical implementation in this first test is pe
formed for the 1D Morse potentialV(x)5D(e2bx21)2

whose parameters are taken to beD50.1744 a.u., b
51.02764 a.u., andm5918.491 a.u. to support 17 bound
state energy levels. Although the Morse potential is nonpo
nomial, a proper choice of the order parametera in the
Sobolev RKLa(Amux2x8u) can allow for the potential ma
trix elements to be evaluated analytically. It is known@32#
that the modified Bessel function of the third kind involve
in the Sobolev RK will become a polynomial of (Amux
2x8u)21 times an exponential decaying factor ofAmux
2x8u if its index takes on half integers. Taking advantage
this observation and letting (a21)/25m11/2, m
50,1,2, . . . , which clearly satisfies the conditiona.1, the
Sobolev RK becomes

L2m12~Amux2x8u!

5
exp~2lAmux2x8u!

2m11m!l2m11 (
k50

m
~m1k!!

k! ~m2k!!2k

3~lAmux2x8u!m2k, ~33!

and the potential matrix elementsVi j will then involve the
integrals

E
2`

`

dxV~x!ux2xi um2kux2xj um2k8

3exp$2lAm~ ux2xi u1ux2xj u!%, ~34!

which can be integrated analytically to give a closed for
Note that, to obtain convergent integrals Eq.~34! for the
Morse potential, the parameterl in the Sobolev RK must be
chosen such thatlAm.b.

Due to the asymmetrical nature of the Morse poten
about its minimum (z50), the following simple formula:

xi52d1S M12 i

M121D b1

, i 51,2, . . . ,M1 , x<0,

~35!

xi 1M1
5d2S i

M2M1
D b2

, i 51,2, . . . ,M2 , x.0

is employed to distribute the grid points for the eigenva
calculations instead of the semiclassically distributed g
points adopted by the DGB method@13#. Here M5M1
1M2 is the total number of grid points used.M2 and M1
~including the potential minimum point! are the numbers o
grid points allotted to the right- and the left-hand sides of
i-

-

f

.

l

e
d

e

potential minimum~i.e., x50), respectively. The truncate
interval @2d1 ,d2# in the calculations is defined in terms o
the distancesd1 and d2 from the potential minimum to the
left and right endpoints of the interval, respectively. The
distances are determined by the energy cutoffEcut via the
relations

d15
1.8

b
lnS 11AEcut

D D ,

~36!

d252
1

b
lnS 12AEcut

D D .

To calculate all 17 energy levels, the energy cutoffEcut can
be chosen to approach the dissociation limit. To be prec
we require 0.9999D<Ecut,D to assure thatEcut lies above
the last energy level. The exponentsb1 ,b2 in Eq. ~35! are
independent ofEcut and are allowed to change over extensi
ranges depending on the condition number of the interp
tion matrix. Moreover, their values determine different d
tributions for a given set of grid points and energy cutoff

The variational characteristic of the method allows us
minimize each calculated eigenvalue by varying the afo
mentioned three factors. For comparison, similar calculati
were also done for the Gaussian radial basis function
which the grid points are distributed according to Eq.~36!
instead of semiclassically chosen points because for m
than one-dimensional cases no means is available to d
mine semiclassical grid points. Table I shows the values
the corresponding parameters adopted in the calculation
well as the exact eigenvalues of the Morse potential. Tabl
presents the calculated eigenvalues of the 1D Morse po
tial based on the parameters listed in Table I for the Gaus
radial basis function and the Sobolev RK. It is evident th
the order of the Sobolev RKLa(Amux2x8u), in the present
case,a52(m11), and the number of grid points, have si
nificant effects on the accuracy of the method. The rate
convergence of the present method is very fast with incre
ing order a of La(Amux2x8u) and the number of grid
points. However, we also observed that a numerical trade
has to be made between the smoothness of a RBF and
number of grid points. These two factors have tremend
influence on the condition number of the interpolation mat
by RBF. As mentioned above, the condition number o
low-order differentiable RBF is usually smaller than a hig
order one, but more grid points are needed to improve
relative accuracy. Nevertheless, with an increase in the n
ber of grid points, the linear dependence among RBF’s d
tributed on the grids will dominate and cause a large con
tion number of the interpolation matrix. The Sobolev RK h
more flexibility to control the condition number than th
Gaussian radial basis function through the adjustment o
differentiability determined by the parametera. For this 1D
Morse potential, the calculated eigenvalues will beco
worse for different distributions of grid points whenm.9 or
a.20. In addition, we also found that the results based
the Gaussian radial basis function is very sensitive and
stable with respect to the change of its exponential param
as indicated by Franke in his classic paper@36# regarding
RBF interpolation, but the Sobolev RK allows for a wid
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TABLE I. Parameters and exact eigenvalues used in the calculations for the 1D Morse potential.

Present worka DGBa

M551 M561 M571 M551 M561 M571
m57 m55 m57 m54 m56

l 0.351 0.419 0.296 0.260 0.353 0.650 0.750 1.00
b1 1.00 1.10 1.10 1.05 1.15 1.10 1.10 1.10
b2 1.65 1.53 1.62 1.64 1.60 1.40 1.40 1.35
Ecut /D 0.99995 0.99993 0.999989 0.999989 0.999996 0.99995 0.999988 0.99

v Eigenvalue~a.u.! v Eigenvalue~a.u.!

0 0.009869224104150 12 0.160498622410143
1 0.028745352510513 13 0.165577633985531
2 0.046471721180962 14 0.169506885825004
3 0.063048330115496 15 0.172286377928562
4 0.078475179314116 16 0.173916110296205

aM1 is fixed to be 11.
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variation of its exponential parameter while maintaining t
same numreical accuracy. Table II shows that the Sobo
RK can consistently yield better results than the Gauss
basis.

B. The 2D Henon-Heiles potential

The commonly used form of the 2D Henon-Heiles pote
tial in atomic units is

VHH~x,y!5
1

2
~x21y2!1gS x22

1

3
y2D y ~37!

which implies that the massm51 and the fundamental fre
quency v51 have been taken in the Hamiltonian of th
system. Its ‘‘dissociation energy’’ is given byEd5(6g2)21.
In the following calculations the parameterg5A0.0125 is

adopted and accordingly,Ed540/35131
3 .
v
n

-

As discussed above, the present method places no s
gent restriction on grid point distributions so that any app
priate 2D grid point sets can be used for solving the bou
state problem of the Henon-Heiles potential as long as
condition number of the interpolation matrix in Eq.~18! is
numerically acceptable. Moreover, the inclusion of the p
tential symmetry in both the grid distribution and the inte
polant Sf(r ) in Eq. ~17! can greatly improve the numerica
efficiency and accuracy, particularly for the treatment of d
generate energy levels. In view of theC3v symmetry of the
2D Henon-Heiles potential, three types of the grid point d
tributions were used in a previous paper@35# for solving the
bound-state Schro¨dinger equation by the collocation metho
in conjunction with the use of inverse multiquadrics as rad
basis functions. However, only the equilateral triangular d
tribution, as schematically shown in Fig. 1, is considered
the present calculations.

In terms of Eq.~32! the matrix elements for the Henon
Heiles potential can be evaluated to give the followi
Morse
TABLE II. Comparsion of the eigenvalues~a.u.! calculated by the present method with the DGB method and the exact ones for the
potential.

v Ev
exact2Ev

cal

DGBa Present worka

M551 M561 M571 M551 M561 M571
m57 m55 m57 m54 m56

0 22.1@213# 21.1@215# 21.6@214# 24.4@214# 27.8@214# 20.0@216# 22.8@215# 21.1@216#

1 26.9@213# 20.15@212# 20.20@212# 21.1@212# 29.0@213# 21.9@215# 23.7@214# 28.0@216#

2 21.1@211# 24.9@212# 29.5@213# 21.2@211# 25.3@212# 22.2@214# 22.7@213# 22.0@214#

3 22.7@210# 24.8@211# 21.4@212# 27.3@211# 22.1@211# 21.4@213# 21.3@212# 22.2@213#

4 22.2@209# 22.3@210# 23.4@213# 23.3@210# 26.1@211# 28.4@213# 24.9@212# 24.8@213#

12 21.7@207# 24.1@208# 28.7@209# 22.3@208# 24.2@209# 23.5@209# 23.0@209# 22.8@210#

13 22.6@207# 25.8@208# 27.7@209# 25.9@209# 25.3@209# 24.9@209# 23.9@209# 24.1@210#

14 23.5@207# 26.5@208# 26.0@209# 22.0@208# 25.8@209# 25.4@209# 24.3@209# 25.0@210#

15 23.7@207# 25.6@208# 24.2@209# 23.2@208# 25.1@209# 24.3@209# 23.8@209# 24.8@210#

16 23.5@207# 24.5@208# 27.4@209# 27.0@208# 26.4@208# 24.9@209# 24.2@209# 25.8@210#

a@2R# means 102R.
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closed form:

~VHH! i j 5
Cm

a11 H a2

2
L2a12~ ir i2r j i !1L2a~ ir i2r j i !

3F2„VHH~xi ,yi !1VHH~xj ,yj !…1
a

2 S 1

2
~xi1xj !

2

1~yi1yj !
21VHH~xi1xj ,yi1yj ! D G J . ~38!

From Eqs.~29!, ~30!, and~38!, we immediately find that, by
taking a225n11/2 with n a positive integer, the Sobole
RK’s L2a22(ir i2r j i), L2a(ir i2r j i), and L2a12(ir i
2r j i) will becomenth, (n11)th, and (n12)th order poly-
nomials, of argumentir i2r j i , times a common exponentia
factor e2lir i2r j i. This simple functional form allows us to
freely choose the integern to simplify the calculations, as
seen in the 1D Morse potential case. In addition, a recurs
relation can be established amongL2a22(ir i2r j i),
L2a(ir i2r j i), andL2a12(ir i2r j i) in terms of the modified
Bessel function of the third kind. This will result in a furthe
reduction of computational work.

The numerical details with regard to the Henon-Hei
potential proceed as follows.~1! to cover all the bound-stat
energy levels, the energy cutoff for the calculations is tak
to beEcut513.838642 which is slightly larger than the ‘‘dis

sociation energy’’Ed540/35131
3 of the system.~2! The

equilateral triangular grid domain is determined by this e
ergy cutoff and grid points are distributed symmetrically a
uniformly. ~3! For the fixed ordera225n11/2, the param-
eterl in La(ir2r 8i) is determined such that all the resu
ing energy levels are on average the lowest among all
calculations. In general, we have found that the calcula
energy levels are not very sensitive to the change ofl over
certain ranges. Table III lists the values of parameterl used
in the calculations and the corresponding range within wh
the calculated energy levels differ at most in their fifth de
mal places. To investigate the convergence with respec
the order parametera225n11/2 and the number of grid
points M, we have carried out a series of calculations w

FIG. 1. Equilateral triangular domain with 91 uniformly distrib
uted grid points. The dotted lines are the contours of the Hen
Heiles potential.
n

s

n

-

e
d

h
-
to

n511220 and sets of 496, 595, and 703 grid points. On
the results corresponding ton517,20 and the set of 595 grid
points are shown in Table III. As a reference, we also cal
lated the case ofn522 with a set of 1081 grid points fo
convergence checks.

For comparison, also listed in Table III are the DAF
results@18# which use 2500 evenly spaced grid points a
the DGB’s results@13# based on the symmetry adapted line
combination of Gaussian radial basis functions located
462C3v symmetrically distributed grid points. It is seen th
the present results are in excellent agreement with the pr
ous ones despite the interpolantSf(r ) used in the calculation
not being symmetrized according to the structure of
Henon-Heiles potential. In particular, we note that the ab
lute differences between the calculated double degene
energies of the last energy level still stays as small as 10210

in the case ofn517 and 595 grid points. The differences fo
lower degenerate energy levels are basically the same a
machine precision. Moreover, at a fixedn, the convergence
of the calculated energy levels is very rapid with respect
the number of grid points, as demonstrated by the last
energy levels forn520 and 496 grid points which are i
agreement with the corresponding ones forn520 and 595
grid points. In general, we found that the calculation is ba
cally converged once the ordern5a25/2 of the Sobolev
RK La(ir2r 8i) is beyond 17, but not more than 25. Overa
results for the different choices are closer to that of DAF@18#
than DGB@13#.

Finally, unlike the DVR or its variants, the prese
method does not suffer from the occurrence of so-ca
ghost energy levels@37#. For example, we have also made
series of calculations using the Colbert-Miller DVR schem
@5#, and the results are generally worse than ours and H
presented in Table III. Specifically, the following is foun
~1! A large number of grid points~at least 2000 points de
pending on different energy cutoffs! is always needed to
cover the entire energy spectra below the ‘‘dissociat
limit.’’ ~2! The ghost energy levels frequently occur in t
range of middle to high energy levels. It is difficult to re
ognize and discard them if there is noa priori knowledge
about the correct energy spectra of the system under st
~3! The numerical resolution for degenerate energy levels
at least four orders of magnitude lower than in the pres
calculations.

IV. CONCLUSION

There are four remarkable features over the other exis
methods in using the Sobolev RK to numerically sol
bound-state problems. First, a function can be optimally
covered from scattered data by Sobolev RK interpolati
This feature assures the robustness of the method. Sec
the Sobolev RK has more flexibility to control the conditio
number of the interpolation matrix through the adjustment
its differentiability determined by its order parametera. This
feature asssures the stability and accuracy of the met
Third, no special distribution for grid points and no tens
product ansatz for multidimensions are required, thus, allo
ing for a judicious choice of grid points according to th
physical properties of the wave functions and potential un
study as long as the condition number of the resulting in

n-
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TABLE III. Comparisons of the calculated eigenvalues for the Henon-Heiles potential.

State HL@13# DAF @18# Present worka

n517 n520 n522
M5595 M5595 M51081

l55.00;5.50 l55.40;7.80 l56.00;8.50

3A1 3.982417 3.982417 3.982417 3.982417 3.982417
1A2 3.985761 3.985761 3.985761 3.985761 3.985761
5A1 5.867015 5.867015 5.867015 5.867015 5.867015
2A2 5.881447 5.881446 5.881446 5.881446 5.881446
3A2 6.998932 6.998932 6.998932 6.998932 6.998932
7A1 6.999387 6.999387 6.999387 6.999387 6.999387
8A1 7.697722 7.697721 7.697721 7.697721 7.697721
4A2 7.736884 7.736885 7.736885 7.736885 7.736885
5A2 8.811326 8.811327 8.811327 8.811327 8.811327
10A1 8.815189 8.815188 8.815188 8.815188 8.815188
11A1 9.466775 9.466773 9.466773 9.466773 9.466773
6A2 9.552382 9.552382 9.552382 9.552382 9.552382
12A1 10.035414 10.035413 10.035413 10.035413 10.03541
7A2 10.035594 10.035592 10.035592 10.035592 10.03559
8A2 10.572478 10.572480 10.572480 10.572480 10.57248
14A1 10.590478 10.590470 10.590470 10.590470 10.59047
15A1 11.160260 11.160259 11.160259 11.160258 11.16025
9A2 11.325231 11.325231 11.325232 11.325232 11.32523
16A1 11.749558 11.749518 11.749519 11.749518 11.74951
10A2 11.752298 11.752297 11.752297 11.752297 11.75229
11A2 12.277191 12.277192 12.277193 12.277192 12.27719
18A1 12.333799 12.333785 12.333781 12.333780 12.33377
19A1 12.748313 12.748423 12.748197 12.748195 12.74819
12A2 13.032057 13.032062 13.032064 13.032062 13.03206
32E 13.081194 13.081196 13.081196 13.081194 13.08119
13A2 13.086874 13.086873 13.086874 13.086873 13.08687
33E 13.233287 13.233250 13.233249 13.233249
as
ra

he
o
e
le
R
t

d
b
se
he

it
ta

K
es

d
t

polation matrix is numerically acceptable. This feature
sures the efficiency of the method. Finally, for gene
bound-state problems with a potential satisfyingV(r )→0 at
ir i→`, the correct asymptotic behavior of solutions to t
Schrödinger equation has been explicitly built into the Sob
lev RK. In addition, the variational characteristic of th
method avoids the occurrence of so-called ghost energy
els which exist in the nonvariational methods such as DV
etc. The results of the above two examples showed that
ordera of the Sobolev RKLa(ir2r 8i) can approximately
be set equal to 16 such that (2¹21l2)a/4c(r ) is square
integrable, i.e., the corresponding RKHS’s are compose
at least 8 times continuously differentiable square-integra
functions. Despite the Hamiltonian matrix not being spar
its diagonalization is efficient due to its low dimension. T
evaluation of the potential matrix elementsVi j in the present
method remains a numerical challenge when dealing w
general nonpolynomial potentials. For molecular bound-s
problems studies are underway.

APPENDIX:
MATHEMATICAL PROPERTIES OF La„irÀr 8i…

Most of the fundamental properties of the Sobolev R
~15! follow immediately from the corresponding properti
-
l

-

v-
,

he

of
le
,

h
te

of the modified Bessel function of the third kin
K (N2a)/2(lir2r 8i) @32#. Here we only list a few relevan
results.

The functionLa(ir2r 8i) is analytic except atir2r 8i
50 and for ir2r 8iÞ0 it is an entire function ofa. Its
asymptotic properties asir2r 8i→0, are

La~ ir2r 8i !;5
G„~a2N!/2…

2NpN/2la2NG~a/2!
if a.N,

2 log~lir2r 8i !

2N21pN/2G~N/2!
if a5N,

G„~N2a!/2…~ ir2r 8i !a2N

2apN/2G~a/2!
if a,N.

~A1!

Similarly for ir2r 8i→`,

La~ ir2r 8i !→ ~lir2r 8i !(a2N21)/2

2(a1N21)/2p (N21)/2la2NG~a/2!
e2lir2r8i

for a.0. ~A2!
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La(ir2r 8i) is integrable for anya.0 and any givenr ~or
r 8), i.e.,

E
RN

dr 8La~ ir2r 8i !5E
RN

drLa~ ir2r 8i !5L̃a~0!5l2a.

~A3!

But it is not necessarily square integrable unlessa.N/2 for
any givenr ~or r 8), i.e.,

E
RN

dr 8La~ ir2r 8i !* La~ ir2r 8i !5L2a~0!

55
G~a2N/2!

2NpN/2l2a2NG~a!
if a.N/2,

lim
r→0

2 log~lir i !

2N21pN/2G~N/2!
if a5N/2,

lim
r→0

G~N/22a!ir i2a2N

22apN/2G~a!
if a,N/2.

~A4!

It is apparent that the integrals diverge fora<N/2.
For any givena,a8.0, the composition formula hold

for the Sobolev RK, i.e.,
l

c-

,

i,

J.
La1a8~ ir i !5La* La8~ ir i !5E
RN

dr 8La~r !La8~ ir2r 8i !.

~A5!

For fixedr 8 andrÞr 8, an important differential relation-
ship between the Sobolev RK and the operatorM̂ (r ) exists
as follows:

M̂ ~r !La~ ir2r 8i !5~2¹ r
21l2!La~ ir2r 8i !

5La22~ ir2r 8i !. ~A6!

As a corollary one has for all positive integerm,a/2

~2¹ r
21l2!mLa~ ir2r 8i !5La22m~ ir2r 8i !. ~A7!

It is obvious that the functionL2m(ir2r 8i) is a fundamental
solution for the operator (2¹21l2)m.
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