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Solving the bound-state Schrdinger equation by reproducing kernel interpolation
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Based on reproducing kernel Hilbert space theory and radial basis approximation theory, a grid method is
developed for numerically solving tHé-dimensional bound-state Schiinger equation. Central to the method
is the construction of an appropriate bounded reproducing keéRi€) A (|r||]) from the linear operator
—Vr2+ A2 wherer is theN-dimensional Laplaciany, >0 is a parameter related to the binding energy of the
system under study, and the real numlerN. The proposedSoboley RK A (r,r’) is shown to be a
positive-definite radial basis function, and it matches the asymptotic solutions of the bound-statingenro
equation. Numerical tests for the one-dimensiqidl) Morse potential and 2D Henon-Heiles potential reveal
that the method can accurately and efficiently yield all the energy levels up to the dissociation limit. Compari-
sons are also made with the results based on the distributed Gaussian basis method in the 1D case as well as
the distributed approximating functional method in both 1D and 2D cases.

PACS numbg(s): 02.70—c, 02.60.Lj, 02.60.Ed, 03.65.Ge

[. INTRODUCTION trigonometric functions, etg. as their interpolating nodal
points. For more than one-dimensional cases, however, the
The function approximation scheme from which differenttensor product form of one-dimensional basis sets are usually
methods can be characterized is of fundamental importancadopted. Although the tensor product form is a conceptually
in numerically solving ordinary or partial differential equa- simple way to construct multidimensional orthogonal basis
tions. Two commonly used function approximation schemesets, it is neither efficient nor accurate as a numerical scheme
are interpolation(e.g., polynomial interpolation and spline because the total number of quadrature points will drastically
interpolation, etg.and basis function expanside.g., Fou- increase with dimension, thus causing computer storage,
rier series and generalized Fourier series,)efithe former  code execution time, and numerical instability problems.
are identified as grid methods which are either global or lo- Shizgal [6] and Schneidef7] have modified the DVR
cal, whereas the latter are referred to as spectral methodsethods by using one-dimensional nonclassical polynomials.
which are global. Both global and local approaches havdoth methods have a notable feature that builds the correct
their own strong and weak points depending on the practicdboundary conditions and asymptotic behavior of the system
application. Generally speaking, global approaches such asder study into their polynomial constructions and, thus not
Fourier series, orthogonal polynomial expansions and polyenly reduces the number of quadrature points employed but
nomial interpolation produce more accurate results than locallso raises the accuracy in numerical calculations. Notwith-
ones in comparable settings. However, local approaches sustanding these attractive features, for more than one-
as finite element and finite difference are more flexible andlimensional problems, both methods need to employ the ten-
are easier to implement than global ones for systems witsor product ansatz.
complex boundary conditions. In this paper we will focus on The DAF method developed by Kouri and co-workers
the interpolation scheme for function approximations in solv-{16,17,19, is another systematic way to incorporate a
ing the bound-state Schdimger equation. (quadraturg weight function corresponding to a classical
The quality of an interpolation scheme is closely relatedpolynomial into function approximations over the distributed
to not only the nature of interpolator but also the total num-grids. The typical interpolating and noninterpolating DAF
ber of interpolating pointgi.e., grid point$ and their distri-  procedures employ Hermite polynomials and their Gaussian
bution. For polynomial interpolators, grid point distribution weight and have been successfully applied to solve one- and
can in principle be quite arbitrary as long as they are distincttwo-dimensional bound-state ScHioger equations and,
Nevertheless, Shannon’s sampling theorem based on a spene-dimensional Fokker-Planck equatiqd$—1§. In prin-
cial interpolation function sin{/x can only accept evenly ciple, the DAF method as an off-spring of the moving least
spaced grid points using the zeros of g)gn the real axis. square treatment, can use any kind of grid point distributions,
In recent years, there has been considerable interest in griglit in practice, only uniformly distributed ones along each
methods for solving the time-dependent or time-independerdimension have been well explored to avoid the need to in-
Schralinger equationg1], among which are the discrete vert a matrix formed on the grid49]. Otherwise, the DAF
variable representatiofDVR) [2-8|, the Fourier pseu- method would become computationally costly for more than
dospectral method9,10], the distributed Gaussia(DGB) one-dimensional problems because of the matrix inversion.
basis method11-15, and the distributed approximating As a result, the tensor product form is the only viable choice
functionals(DAF) [16,17,19. for the DAF method to be extended to multidimensional ap-
DVR and Fourier pseudospectral methods using orthogoplications.
nal basis sets are well defined in one-dimensional cases. The DGB method has been widely used in molecular
Both methods necessitate quadrature points, i.e., zeros of ovibration-rotational calculationgl1-15. One advantage of
thogonal basis functionge.g., orthogonal polynomials and using the Gaussian function exp|r|?)(A>0) as an inter-
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polation basis function on grids is that the relevant potentiaparisons are also made with the results based on the distrib-
matrix elements can be accurately evaluated using low ordested Gaussian basis method in the 1D case as well as the
Gauss-Hermite quadratures. Furthermore, the grid points catistributed approximating functional method in both 1D and
be flexibly distributed over configuration regions where the2D cases. Concluding remarks are given in Sec. IV.
amplitude of the wave function is significant. This latter fea-

ture allows for the symmetry of the system under study to be Il. THEORY

built into the grid point distribution. Finally, the Gaussian
function, similar to the Sobolev reproducing kerr&K) A. RKHS and RK

function A ,(||r]|]) introduced in the paper, is a radial basis Without loss of generality we start with the
function with respect to its argument. All radial basis func- N-dimensional Schidinger equation in atomic units:

tions can be arbitrarily distributed, thus, allowing for a great

reduction of the total number of grid points to be employed N1

in the calculations. _21 2 EJFV(XLXZ* co XN (XX, e XN
The reproducing kernel Hilbert spa@@KHS) method has :

been shown to be a powerful tool for constructing accurate  =Ey(x;,X,, . .. Xy)- (1)

analytical potential energy hypersurfack20—22 and for

solving the bound-state Sclifiager equation23]. In the  The total energy of the systefis assumed to be negative
former case the RKHS and its associated RK were confor the bound-state problems considered in this paper. By
structed from Taylor's formula with exact remainder, adopting the coordinateg = ux(i=1,2,...N), Eq. (1)
whereas in the latter case they were constructed from thgaduces to

Green’s function corresponding to the bound-state Schro

dinger equation. These two RK’s belong to a class of gener- (= V2N (r)=—2V(r)i(r), )
alized spline functions associated with ordinary linear differ-

ential operators, but subject to different boundary condition@vhere A2=—2E>0 and V2=3N .(d¥dZ) with r bein
[24-26. In this paper we pursue the use of the RKHS (=L (d°/dZ) g
method for solving the bound-state Scttirger equation by - , :
generalizing the previous definition of the RR3]. The (21’22,’ ce ) Follectwely. BAased_on “;‘e Gzreens function
RKHS method along with the interpolation properties of ra-CG(r:r') for the linear operatai (r) = —Vr+\~, Eq.(2) can

dial basis functiong25,27,28 underlies this development. P€ readily transformed into an integral equation

The central idea of the method is to define a Hilbert space

with a suitable inner product from which an appropriate r :f dr'G(r.r' —2v(r’ r 3
positive-definite RK can be constructed uniquigg]. In this W) RN (rrot (T, @
paper, arN-dimensional RKA ,(||r]]) is constructed from the _ _

linear operator- V2+\2 whereV? is theN-dimensional La-  where R" denotes the entireN\D Euclidean space. The
placian,\ >0 is a parameter related to the binding energy ofPositive-definite Green’s functios(r,r’) satisfies the cor-
the system under study, and the real numerN. The pro-  rect bound-state boundary conditions and it has an explicit
posed (Soboley A ,([r|]) RK is shown to be a positive- form expressed in terms of the modified Bessel function of
definite radial basis functiofRBF), and it matches the the third kindK ()

asymptotic solutions of the bound-state Schnger equa-

tion.

The specific radial property of the Sobolev R¥,([r|) G(r.r')= X(ﬁ
can be incorporated into an efficient and accurate interpola-

tion scheme for approximating the bound-state wave funCWhere||- .| represents the Euclidean norm, i.e., the Euclid-

tion ¢(r_). Rece_ntly, RBF. mte_rpolatlon has attrgcte_d a greatean distance. Within the framework of E¢8) and(4) Kalos
deal of interest in approximation theory for multivariate scat-

. ) : has carried out Monte Carlo calculations for the ground state
tered data interpolatiof27,28. There are three salient fea- . -
tures in using this theory for the grid method) the only  ©f some f%'W'pOdyzsySte”{Qg]- The Imyear ope_‘ratoM(t)
restriction required for the distribution of grid points is that = — V¢ +A° with A">0 and its Green's functioiG(r,r")
every point must be distinct from one anoth@. The RBF’s  also underlie the RKHS method presented below for general
need to be symmetric and strictly or conditionally positive- Multidimensional bound-state problems. We first present
definite. Each RBF always generates an RKHS with a propef0me basic concepts involved in the RKHS and [2K,26].

understood to designate Mdcdimensional ND) vector for

A )NIZKN/Z—l()\”r_r,”) @
”r_rr”N/Zfl !

inner product such that the reproducing property h6ggl. ~ LetH be a Hilbert space formed by a class of real con-
(3) A function can be optimally recovered from scatteredtinuous bounded functions. The Hilbert spatés said to be
data by the RBF interpolatiof27,28,33,34 a reproducing kernel Hilbert spa¢BKHS) if there exists a

The paper is organized as follows. In Sec. Il the underlyreal symmetric and positive-definite functiét{t,t") which,
ing principle of the RKHS method and its applications tofor everyt’, K(t,t") as a function oft, belongs toH, and
scattered data interpolation and function approximation ar@ossesses the following reproducing property
presented for general multidimensional cases. In Sec. Il the
numerical implementation is illustrated by solving the Sehro f(O)=(f(t"),K(t,t"))y,
dinger equation for a one-dimensior{dD) Morse potential (5)
as well as a two-dimensional Henon-Heiles potential. Com- K(t,s)=(K(t,t"),K(s,t"))yr,
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wheref(t) is a function inH and K(t,t’) is called the re-
producing kernelRK) of H. The explicit definition of the
nature of the inner produgt - -,- - - )¢, will depend on the
particular linear space involved, and the subsctipindi-

cates that the inner product is performed over functiorts.of
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(2) with any acceptable potentisll(z). Of paramount impor-
tance is that Eq(8) enables one to define an appropriate
RKHS for the 1D bound-state problem, as seen below.

Suppose that a class of square-integrable continuous func-

tions{¢, ¢, ...}, forms a linear Hilbert space which endows

Intuitively, a reproducing kernel Hilbert space is one whichan inner product and norm defined as

contains a kernel functioK(t,t") playing a role similar to

the Dirac delta functiors(t—t’). However, the Dirac delta

function is not truly a reproducing kernel. For example, for
an L? Hilbert space formed by a class of square integrable
functions, although the Dirac delta functiaf(t—t") pos-
sesses the reproducing propeftyt’ s(t—t")f(t")=1f(t), it
does not satisfy the criterion that, for every S(t—t') as a

<¢,¢>=f_:dz{h?l<z>¢<z>}*{m<z>¢<z>},

() =llyllP<o=. ©)

where the * means the Hermitian conjugate. The RK corre-

function of t belongs to the same Hilbert space. It can besponding to this Hilbert space is uniquely given hyz,z’)

shown[26] that, to every RKHS there corresponds a uniquedefined in Eq.(6). The reproducing property can be easily
RK and, conversely, given a real symmetric and positivesgen from the following manipulations:

definite functionK(t,t’) one can construct a unigue RKHS
with K(t,t’) as its RK. In general, the construction of a
RKHS is dependent on both the class of functions forming a
linear space and the definition of the associated inner prod-
uct. To establish a RKHS for solving the bound-state Schro
dinger equation, the associated RK must be at least twice
continuously differentiable and square integrabite accor-
dance with the bounded nature of bound-state wave func-
tions).

For an illustration, we first consider the construction of
suitable RK'’s for the 1D bound-state case. It is easy to show

W(2)=(M(z2,2"),p(2'))

:f A2 {2 A (22 )2 ) i)}

—o0

- [Tazeaa g

Jxdz’{h”/l(z')G(z,z')}*t/x(z')

—

that by the use of the 1D Green'’s functi@y(z,z") of the
linear operatoM (z') = —d?/dz2+\?, the kernel function

+
A(z,z’)=f dz'G(z,2")G(z",2")

(6)

= i(1+)\|z—z’|)e’>‘|z’z"
4\8 ’

is square integrable for any given(or z') as well as real

J+xdz’5(z—z’)¢(z’), (10)

—

where the Hermiticity of the operatd(z) has been used.
Note that the last equality does not imply that thé&unction

is a RK because the definition of the inner product is differ-
ent from Eq.(9) and the usual? Hilbert space withM (z)

=1 is not a RKHS. In general, a null linear subspace
spanned by the set of functions fulfiling the equation

symmetric positive definite. Furthermore, the action of thel\?l(z)f(z)zo needs to be added to the RKHS for comple-

operatorM(z’') on theA(z,z') yields

+

M(z')A(z,z’)=f mdz”G(z,z”){l\?I(z’)G(z”,z’)}

— o

= fﬂodz”G(z,z”)é(z”—z’):G(z,z’).

— o

@)

Here, we have used the proper(z')G(z",z')=8(z"
—2Z2'). If the parametein in Eq. (6) is determined by the
Schralinger Eq.(2), then, the integral Eq.3), can be con-
verted, in terms of Eqs(2) and (7), to another important
form

¢(2)=J de'{l\A/l(Z’)A(Z,Z')}{M(Z’)w(z’)}- ®

— oo

tion. However, here this null space only has the trivial solu-
tion f(z) =0 satisfying square integrability.

It is easy to see that the Hilbert space endowed with the
inner product(9) will reduce to the usual? Hilbert space
endowed with the inner produgt =dz¢* (z) y(z) by taking
I\7I(z)=1. Although both Hilbert spaces are all composed of
square-integrable functions, the presé8bboley Hilbert
space excludes functions with differentiability of less than
second order, such as the Heaviside step function, thus im-
posing more stringent smoothness conditions on its members
than its L? counterpart. The solutions of the bound-state
Schralinger equation are required to be at least twice con-
tinuously differentiable and will definitely fall into the
present Hilbert space which is a subspace of the usgal
Hilbert space.

In a previous papef23] the above 1D RK has been
adopted for variationally solving the 1D bound-state Sehro
dinger equation in conjunction with a grid method. The nu-

We remark that this relation should not be taken as an intemerical results showed that the RK(z,z") defined in Eq.

gral equation for determining the wave functigifz) as it

(6) as an interpolation basis can yield accurate energy levels

does not involve the potential of the system. It is merely arup to the dissociation limit for the Morse and$ebl-Teller

identity satisfied by any/(z) that solves the Schdinger Eq.

potentials. A major drawback with the above RK is its lack
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of differentiability to high orders, as a result, more grid - ) ik
points are needed in the corresponding calculations. Never- A (r,k)= JRNdf Ay (r,r)e . 13
theless, the above formulation is closely related to the

asymptotic formM (z) of the bound-state Schiinger opera-  The reproducing property of ,(r,r’) under the inner prod-
tor and the associated Green’s functi®fiz,z’). This prop-  uct(12) will manifest itself, if and only if

erty renders the RKHS method accurate even up to the dis- - A

sociation limit. Unfortunately, the above procedure for A (r,k)=(\2+Kk?) "2 ler, (14

constructing the 1D RKHS and its associated RK cannot b% . belonai b :
directly extended beyond the 1D case because the resultahfUS: @ny functionj(r) belonging toH, can be written as

RK'’s are not necessarily square integratds can be seen _ , /
from the following development and the Appenyix PO =(Aa(r 1), 9
In the following we describe a different procedure based 1 _ _
on Fourier analysis that enables the construction of suitable = Nf (KA L(rk)* J(K)(N2+Kk?)a2
RK’s for general multidimensional bound-state problems. (2m)" IR
We first define a positive-definite operat@(r)=M(r)** 1
=(—V2+ 1) with A\?>>0, >0 and assume the exis- = Nf dky(k)e'kr. (15)
tence of its Fourier transforf80] through the relation (27m)"J RN

The last equality in Eq(15) is just the inverse Fourier trans-

- - 1 ~
QN (r)=M(r)**y(r)= Nf Ndk()\2+ k2)a/4 form of the functiony(k). As a result, the required RK can
(2m)" be directly constructed by the inverse Fourier transform of
Xk, ay Adlrk)as

where ¥ is the Fourier transform ofs. The operatoQ(r) A (r,r')= !

thus defined is Hermitian provided th@(r)(r) is square (2mN
integrable, leading to a real HilbeSoboley spaceH,
which is endowed with the inner product and norm

dekT\a(r’,k)e”“r
R

1 gk r=r")
2(277)N£,\Ndk()\2+ k2)a/2
<¢w=hmw@mmmw@mwm B 1
2(N+a—2)/2WN/2Aa—NF(0{/2)
X(Nr=r/ (N2 - pyp(Nr=r"]),  (16)

:JHNdr{I\“A(r)“"‘qs(r)}*{l\?I(r)“"‘w(r)}

1 ~ > ol wherel is the Gamma function anl ., denotes the

B (2m)N ]RNdkd)(k) YK +K) modified Bessel function of the third kind of ordeiN (
—a)l2.

()= g 2<os (12) The RK A (r,r") is an important kernel function which

was first investigated in potential theory where it is termed
the Bessel potential due ¥ 42 [31]. The Appendix lists

. . A . . . some of its basic properties relevant to this paper. In poten-
integrability of Q(r)(r), while ensuring that o} in the tial theory, the order parameter in the kernel function

present Hilbert spadd ,, removes those functions for which A,(r,r') can be any positive real number. However, the

Q(r)y(r)’s are notL* square integrable from the usuat  Hilbert space associated with bound-state problems consists
Hilbert space. Once the inner product is given, we can propf the set ofL2 square-integrable functions and, accordingly,
ceed to construct the unique RK associated with Hilbergne corresponding RK also must & square integrable.
spaceH,, . ) Equationg/Al) and(A4) show that the conditioa>N must
There are two ways to construct bounded RK’s with thepe fylfilled for the kernel function\ (r,r’) to be bounded
restriction ofa>N (to be addressed belowOne approachis and L2 square integrable. The positive definiteness of the
to follow the same procedure as the above 1D ex?mple b¥ymmetric kernelA (r,r') is self-evident in the sense of
first finding the Green’s function of the operat@y(r) Moore [26] [also see Eq(19)]. It is important to point out
=(—VZ+\?)¥* with proper bound-state boundary condi- that the value of the RK\ ,(r,r’) depends only on the rela-
tions and then convolving the Green’s function, as in@®g. tive distance of two distinct pointsandr’, i.e., it is a radial
to achieve the desired RK. This way is conventional, but nobasis functiofRBF) and thus is rotationally invariant. Here-
straightforward as mentioned previously. Another approactafter we adopt the formk ,(|r—r’||), under the name Sobo-
presented below is much easier and conceptually more apey RK of ordera due to its relation to the operatQr,(r)
pealing. [27], to indicate this radial property. The completion of the
Let A,(r,r’) be the required RK associated with the RKHS associated with ,(|r—r'|) can be achieved with the
above Hilbert spackl, andA ,(r,k) be its Fourier transform same argument given for the 1D casee the discussion
related by below Eq.(10)]. Moreover, an important feature of the Sobo-

for any functionsy and ¢ belonging toH,, . TheL? square-
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lev RK A (|[r—r’|) is its high-order differentiability result-
ing from an appropriate choice of the order parameter

>N. Finally, itis easy to see that the previous 1D example iHere |- -

a special case of the new generalized version with4 and
N=1.

B. Function approximation by radial basis functions

In what follows we will show an optimal feature of inter-
polation and function approximation in terms of the RBF

A,(|r—=r’])) and its corresponding RKHB,,. Consider an
arbitrary set of M distinct scattered points X
={r1, r2, P
data F={f(ry), f(ry),...,f(ry)} for a functionfeH,.
Since the Sobolev RK\ (||r—r’|]) for any fixedr’ (or r)
belongs toH,, its translates{A (|r—ri[)}M,, over the
data setX, span a data-dependent subspaceélof The in-

terpolantS; to f can then be constructed via the representa5||8(r u, X)||H

tion

M
Si(n=2, cilalllr=ril), (7

where the real coefficientsy,c,, . ..
system

Cv Solve the linear

M
f(rj)zzl cihg(lrj=rilh, j=12,... M, (18

provided that the symmetric interpolation matdfx ,(|r;

—ri)} is nonsingular. It has been shown that as long as the
RBF A (|[r—r'[) is positive-definite in the sense of Moore,

i.e., for any set oM complex numberga;}™ , ,

M M
ijEzl afc/\a(\|rj_fi||)ai:i12:1 af a( A (lr—r;l),
XAa(||r_ri||)>r
M M
:<z aiAa(”r_riH)!z QA

i=1 i=1

><(||r—ri||)> =0, (19)
r
where the reproducing property

(Agllr=riDAa(lr=ril))e=Aullrj—ril)  (20)

has been used in the RKHS$,, then the interpolation ma-
trix is always nonsingular and thus E@L8) is solvable
[27,28. Moreover, for an arbitrary interpolaii¥; to f of the
form

M
Wi(r)= 2, f(rui(r), (21

XU-GUANG HU, TAK-SAN HO, AND HERSCHEL RABITZ
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(1) =W))< flln e (ru, Xl - (22)
|l indicates the norm irH,, determined by the

inner product(12), ande(r,u,X) represents the error func-
tional whose norm can be explicitly written as

M
lo(ru Xl =Aa(0) =22 wi(nAu(Ir=ri)

M
+i,-2:1 u(OU (DA L(Ir=ril). (23

This formula allows for comparisons among various interpo-
lants. To this end we can ask for an optimal choice of the set
{ui(r)}™, that minimizes Eq.(23). The optimal solution
u’(r) can be obtained by taking the variation of E2Q), i.e.,

=0, and this results in the linear system for

up(r)

<

>

fD=A([r—r;, 1,2,... M.
(24)

rilju

Ao(lry=

Since A (||r—r’|) is positive-definite, as described in Sec.
IIA, Eq. (24) is solvable and its solution is unique. As a
result, the optimal solution is found to be

M

u?<r>=k§l (A DA lr=rdD, i=1,2,... M,

(29

where (A, 1.’s are the elements of the inverse interpolation
matrix {A,([[rj—ril)}. It is clear thatui(r)’s fall into the
subspace spanned by the translate@/bj(”r nit, and
certainly satisfy the Lagrangian type interpolation conditions
(i.e., cardinal condition

uis(rj)=5ij, i,j,=1,2,...M, (26)
where §;; is the Kronecker delta. Substituting this optimal
solution Eq.(25) back into Eq.(21), we find that the general
interpolant W;(r) becomes equivalent to the interpolant
Si(r) in Eq. (17), as can be seen from the following

M M
Wi (r)= E frouin =2, £ 2, (A DA allIne=rl)

M

=k21 A (Ir—rd)=Sk(r), (27)

wherec,=3M . f(r;) (A, Dk is simply the unique solution
of Eq. (18).

We come to the important conclusion that the interpolant
S;(r) by the RBFA ,(||r—r’||) to scattered data is the unique

where the scattered data $ets the same as that used in Eq. minimizer of the error bound Eq22) among all general
(18) and{u;(r)}M , is an arbitrary set of linearly independent interpolantsW(r)’s. Note that the error bound E(R2) is in
square integrable functions, Schabd®8] has shown that reference to the RKH$, which requires thaf (r)f be
the error bound for this general interpolation can be given bysquare integrablésee Sec. Il A
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I1l. NUMERICAL IMPLEMENTATION

C
. . . . . Tij:_—MJ drAa(||r—ri||)*V,2Aa(||r—rj”)
This section describes the computational details for solv- 2 JgN

ing the bound-state Schiimger equation by using the Sobo-

lev RK A (|[r—r’]]). The underlying principle is to use the _ 1 C, j kZelk- (i) _ &[A Ari=rih
Sobolev RKA (||r—r’||) associated with the RKHSI, to 2 2mNJenT (24K 2 Al
approximate the wave functiog(r). There are two signifi-

cant differences between the Sobolev RK([|r—r’|) and =N Ao (=D, (30)

the Gaussian function ekp\(r—r’)2(\>0) as interpola- N
tion bases. For fixed parameter>N, A ([r—r'[) is fi- ~ whereC,= (Il u;) " .
nitely continuously differentiable while efpA(r—r’)?}(x The remaining part of the present method involves the
>0) is infinitely continuously differentiable. Numerical ex- evaluation of the potential matrix elemeris; , which is
periments have showf27] that the condition number, de- generally more cumbersome when compared to the DVR and
fined as the ratio of largest and smallest eigenvalues of thether pseudospectral methods, or even the DGB. However,
interpolation matrix in Eq(18), is generally large for infi- in terms of an intergral representation
nitely differentiable(smooth radial basis functions such as
the Gaussian, when compared to finitely differentiable
(smooth ones such as the Sobolev RK. The larger the con-
dition number is, the worse the approximation becomes.
Moreover, for general bound-state problems with the poten- AN2(r—r")2
tial having the propertyV(r)—0 at ||r|—, the correct XEXF{_W_ T)
asymptotic behavior of solutions of the Sctirmger equation
has been explicitly built into the Sobolev RK, and the param+or the Sobolev RK, these matrix elements can be conve-
eter  appearing inA,([r—r'[) is related to the energy niently expressed as the following integral:
cutoff because the operatdft (r) = —Vr2+ \? [see Eq(2)]
is the asymptotic form of the Hamiltonian at large distances.
However, the Gaussian function does not possess this prop- Vij=Cyu ‘RNdrV(r)Aa(Hr_ri”)*Aa(”r_rj”)
erty.

In general, the exact values of wave functig(r) to be ZBJw/ZdQDSina_l(Z(p)JOchV\I(za_N)/Z_l
sought are not known on the grid points, nevertheless, the 0 0
interpolantS;(r) as an expansion of data dependérg., 5 5
distributed Sobolev RKA ,(|lr—r;]|), i=1,2,... M, can be Xex;{ Cwe AE(ri=r)) )
considered as an ansatz for the wave functign). To de- 4w
termine the expansion coefficienfs;} of ¢(r), instead of
using the linear system E¢l8), we can invoke the conven- Xf dre V[ r Jwsin(2¢) + r;sirf( o)
tional Rayleigh-Ritz variational principle and solve the fol- RN
lowing linear system:

o0

dwwle—N2-1
2NZN2)\ a=NP (o [2) Jo

Aalr=r"lh=

(31)

+ricos(e)], (32

M . where B=C,, /[2N* @~ 27N 2272N[(¢/2)2], which can be

Zl (Hij—ESj)c;=0, i=12,... M, (28)  analytically integrated for any polynomial potential. Explic-

= itly, Vj; will be a combination of the Sobolev RK'’s of dif-

o ferent ordergsee, e.g., EQ38)].
whereH;; =T;; +V;; andS; are the Hamiltonian and overlap | general, the evaluation of non-polynomial potential
matrix elements, respectively. The solution of the generalmatrix elements requires numerical integration. However,
ized linear eigenvalue problem in E@®8) will give the ex-  ynlike most existing grid methods, e.g., DVR and other pseu-
pansion coefficients and corresponding energy eigenvaluegospectral methods, which assume fixed quadrature point
As with other grid methods, the number of energy levels ofgistributions, the RBF based methods have no restriction on
Eq. (28) can be determined by properly setting an energythe grid point distributions as long as the condition number
cutoff. The overlap matrix elemefg; and the kinetic matrix  of the associated interpolation matfiA ,(/[r; — rj||)} is nu-
elementT;; can be easily worked out through the Fourier merically acceptable. Consequently, we can judiciously ar-
transform Of the SObOIeV RK. In terms Of the deﬁnitions Of range the gnd points to match the Symmetry of the potentia'
S andTj;, we obtain their closed forms and to have the significant regions covered by denser points.
This added freedom of distributing grid points can lead to a

substantial reduction of the total number of grid points used
Sij =CﬂJ A =rilD* Ayl =rl) in the calculations, and thus reduce the computational cost,
: while still maintaining the desired numerical accuracy, as
C, glk-(ri=rj) demonstrated in the following 1D and 2D examples.
= (ZW)NJHN 2K =C Az(llri—ril) (29 Finally, we remark that the accuracy and efficiency of the

present method depends on three fact6ts:the order pa-
rametera which determines the size of the RKHS§, to be
and used in the formulation of a bound-state problem and the



2080 XU-GUANG HU, TAK-SAN HO, AND HERSCHEL RABITZ PRE 61

exponential parametex of the RK A, (|r—r'[) which is  potential minimum(i.e., x=0), respectively. The truncated
connected with the energy cutofg) the number of the grid  interval[ —d;,d,] in the calculations is defined in terms of
points which defines the size of a subspackigiconstructed ~ the distancesl; andd, from the potential minimum to the
from placing the Sobolev RK’s on gridé3) the distribution  1€ft and right endpoints of the interval, respectively. These
of grid points. All three factors are implicit in the interpola- distances are determined by the energy cukaff via the
tion condition Eq.(18), and hence the condition number of relations

the interpolation matrix becomes a key measure for numeri-

cal accuracy and stability. 1.8 ( Ecut)
dy=—ln| 1+ /=],
B D

A. The 1D Morse potential (36)

The numerical implementation in this first test is per- 1 [Ecut
formed for the 1D Morse potentiaV/(x)=D(e #—1)? d2=—EIn(1— F)
whose parameters are taken to »=0.1744 a.u., 8
=1.02764 a.u., angk=918.491 a.u. to support 17 bound- Tq calculate all 17 energy levels, the energy cufgff, can
state energy levels. Although the Morse potential is nonpolyhe chosen to approach the dissociation limit. To be precise,
nomial, a proper _choice of the order parameterin the e require 0.9999<E, <D to assure thaE, lies above
Sobolev RKA ,(y/u|x—x’|) can allow for the potential ma- the last energy level. The exponettts,b, in Eq. (35) are
trix elements to be evaluated analytically. It is knof82]  jndependent o, and are allowed to change over extensive
that the modified Bessel function of the third kind involved ranges depending on the condition number of the interpo'a_
in the Sobolev RK will become a polynomial of/f|x  tion matrix. Moreover, their values determine different dis-
—x'[)"! times an exponential decaying factor @fu|x tributions for a given set of grid points and energy cutoff.
—x'| if its index takes on half integers. Taking advantage of The variational characteristic of the method allows us to
this observation and letting of—1)/2=m+1/2, m minimize each calculated eigenvalue by varying the afore-

=0,1,2 ..., which clearly satisfies the conditiam>1, the  mentioned three factors. For comparison, similar calculations
Sobolev RK becomes were also done for the Gaussian radial basis function for
which the grid points are distributed according to E86)

A 2(Np|x=x"]) instead of semiclassically chosen points because for more
than one-dimensional cases no means is available to deter-

exp(—Mu|x—X']) - (m+k)! mine semiclassical grid points. Table | shows the values of
- 2T I L (m—k)12F the corresponding_parameters adopted in the cal_culations as

well as the exact eigenvalues of the Morse potential. Table I

X (N \/;|X_X'|)m*k, (33 presents the calculated eigenvalues of the 1D Morse poten-

tial based on the parameters listed in Table | for the Gaussian
and the potential matrix element4; will then involve the  radial basis function and the Sobolev RK. It is evident that
integrals the order of the Sobolev RK ,(y/u|x—x’|), in the present
case,a=2(m+1), and the number of grid points, have sig-
* d o Im=Kly__ v [m—k' nificant effects on the accuracy of the method. The rate of
J XV(X)[x= x| ™ [ x— x| : P
e convergence of the present method is very fast with increas-
ing order @ of A, (Ju|x—x’|) and the number of grid
X exp{ = M| x— x|+ [x=x;)}, (34 points. However, we also observed that a numerical trade-off
] ) ) ) has to be made between the smoothness of a RBF and the
which can be integrated analytically to give a closed form., mper of grid points. These two factors have tremendous

Note that, to obtain convergent integrals Eg4) for the  inflyence on the condition number of the interpolation matrix
Morse potential, the parameterin the Sobolev RK must be by RBF. As mentioned above, the condition number of a

chosen such tha{\/;>:3-_ _ low-order differentiable RBF is usually smaller than a high-
Due to the asymmetrical nature of the Morse potentialyrder one, but more grid points are needed to improve the
about its minimum £=0), the following simple formula:  rejative accuracy. Nevertheless, with an increase in the num-
M. —i\ b1 ber of grid points, the linear dependence among RBF’s dis-
X = —d1< 17| ) L i=1,2,... My, x=0, tributed on the grids will dominate and cause a large condi-
M;—1 tion number of the interpolation matrix. The Sobolev RK has

(355  more flexibility to control the condition number than the
[ b2 Gaussian radial basis function through the adjustment of its
Xi+m, = da M—M,] 1=1.2,... Mz, x>0 differentiability determined by the parameter For this 1D
Morse potential, the calculated eigenvalues will become
is employed to distribute the grid points for the eigenvalueworse for different distributions of grid points whem>9 or
calculations instead of the semiclassically distributed gride>20. In addition, we also found that the results based on
points adopted by the DGB methdd3]. Here M=M,;  the Gaussian radial basis function is very sensitive and un-
+ M, is the total number of grid points usell, and M;  stable with respect to the change of its exponential parameter
(including the potential minimum poinare the numbers of as indicated by Franke in his classic pap&6] regarding
grid points allotted to the right- and the left-hand sides of theRBF interpolation, but the Sobolev RK allows for a wider
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TABLE |. Parameters and exact eigenvalues used in the calculations for the 1D Morse potential.

Present work DGB?

M =51 M=61 M=71 M =51 M=61 M=71

m=7 m=5 m=7 m=4 m=6
A 0.351 0.419 0.296 0.260 0.353 0.650 0.750 1.000
b, 1.00 1.10 1.10 1.05 1.15 1.10 1.10 1.10
b, 1.65 1.53 1.62 1.64 1.60 1.40 1.40 1.35
E../D 0.99995 0.99993 0.999989  0.999989 0.999996 0.99995 0.999988  0.999994
v Eigenvalue(a.u) v Eigenvalue(a.u)
0 0.009869224104150 12 0.160498622410143
1 0.028745352510513 13 0.165577633985531
2 0.046471721180962 14 0.169506885825004
3 0.063048330115496 15 0.172286377928562
4 0.078475179314116 16 0.173916110296205

M, is fixed to be 11.

variation of its exponential parameter while maintaining the As discussed above, the present method places no strin-
same numreical accuracy. Table Il shows that the Sobolegent restriction on grid point distributions so that any appro-
RK can consistently yield better results than the Gaussiapriate 2D grid point sets can be used for solving the bound-
basis. state problem of the Henon-Heiles potential as long as the
condition number of the interpolation matrix in E@.8) is
numerically acceptable. Moreover, the inclusion of the po-
tential symmetry in both the grid distribution and the inter-
The commonly used form of the 2D Henon-Heiles poten-polantS(r) in Eq. (17) can greatly improve the numerical
tial in atomic units is efficiency and accuracy, particularly for the treatment of de-
generate energy levels. In view of ti, symmetry of the
2D Henon-Heiles potential, three types of the grid point dis-
tributions were used in a previous papab] for solving the
bound-state Schdinger equation by the collocation method
L in conjunction with the use of inverse multiquadrics as radial
which implies that the masg =1 and the fundamental fre- s fnctions. However, only the equilateral triangular dis-
quency =1 have been taken in the Hamiltonian of the i tion, as schematically shown in Fig. 1, is considered in
system. Its “dissociation energy” is given l§3=(6y*) "' e present calculations.
In the following calculations the parameter /0.0125 is In terms of Eq.(32) the matrix elements for the Henon-
adopted and accordinglf 4= 40/3=133. Heiles potential can be evaluated to give the following

B. The 2D Henon-Heiles potential

1 2 2 2 1 2
VHH(x,y)=§(x +y)+ vy x —3Y)y (37

TABLE Il. Comparsion of the eigenvaluéa.u) calculated by the present method with the DGB method and the exact ones for the Morse
potential.

v Esxact_ Esal
DGB? Present work
M=51 M=61 M=71 M=51 M=61 M=71
m=7 m=5 m=7 m=4 m=6

0 —-2.10-13] —1.10-15] —1.9-14] —4.4 —14] —-7.4-14] —0.0 - 16] —-2.4-15] —-1.1-16]
1 —-6.9-13] -0.19-12] —-0.20-12] —-1.10-12] —-9.0-13] -1.9-15] —-3.71-14] —8.0—16]
2 —1.10-11] —-4.9-12] —-9.5-13] —-1.27-11] —-53-12] —2.2-14] —2.1-13] —2.0-14]
3 —2.71-10] —4.9 —-11] -14-12] —-7.3-11] —2.10-11] —-1.4-13] -1.3-12] —-2.2-13]
4 —-2.4-09] —-2.3-10] -3.4-13] -3.3-10] —-6.1—-11] -84 —-13] -49-12] —-4.4-13]
12 —-1.71-07] —4.1-08] —8.1—-09] —-2.3-08] —4.4-09] —-3.9-09] —-3.0—09] —-2.4-10]
13 —-2.4—-07] —5.4 -08] —7.71—-09] —-5.9-09] —-5.3-09] —4.9-09] -3.9-09] —4.1 - 10]
14 —-3.-07] —6.9 —08] —-6.0 —09] —2.0-08] —-5.4-09] —54-09] —4.3-09] —5.J —10]
15 —-3.71-07] —5.4 - 08| —4.2-09] —-3.7-08] —5.1-09] —-4.3 -09] —-3.4-09] —-4.94 -10]
16 —-3.9-07] —4.9-08] —7.4-09] —7.0-08] —6.4 —08] —-4.9-09] —4.2-09] —-5.-10]

9 —R] means 10R.
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n=11-20 and sets of 496, 595, and 703 grid points. Only
the results corresponding to=17,20 and the set of 595 grid
points are shown in Table Ill. As a reference, we also calcu-
lated the case oh=22 with a set of 1081 grid points for
convergence checks.

For comparison, also listed in Table Il are the DAF’s
results[18] which use 2500 evenly spaced grid points and
the DGB'’s result$13] based on the symmetry adapted linear
combination of Gaussian radial basis functions located at
462 C,, symmetrically distributed grid points. It is seen that
the present results are in excellent agreement with the previ-
ous ones despite the interpol&{r) used in the calculation
not being symmetrized according to the structure of the
Henon-Heiles potential. In particular, we note that the abso-
lute differences between the calculated double degenerate
energies of the last energy level still stays as small as%0
FIG. 1. Equilateral triangular domain with 91 uniformly distrib- 1" the case ofi=17 and 595 grid points. The differences for

uted grid points. The dotted lines are the contours of the HenonlOWer degenerate energy levels are basically the same as the

y(a.u.)

x(a.u.)

Heiles potential. machine precision. Moreover, at a fixadthe convergence
of the calculated energy levels is very rapid with respect to
closed form: the number of grid points, as demonstrated by the last five

energy levels fom=20 and 496 grid points which are in

a? agreement with the corresponding ones et 20 and 595
S Azarallri=ril) + Azadllri=rill) grid points. In general, we found that the calculation is basi-
cally converged once the order=a—5/2 of the Sobolev
RK A (|[r—r’])) is beyond 17, but not more than 25. Overall
results for the different choices are closer to that of DA8]
than DGB[13].
“ (39) Finally, unlike the DVR or its variants, the present

method does not suffer from the occurrence of so-called
. ] . ghost energy levelg37]. For example, we have also made a
From Eqgs.(29), (30), and(38), we immediately find that, by  series of calculations using the Colbert-Miller DVR scheme
taking a—2=n+1/2 with n a positive integer, the Sobolev [5] and the results are generally worse than ours and HL's
RK's  Ayyori=rjl),  Azalri—rjl), and Azeia(llri  presented in Table 1iI. Specifically, the following is found.
—1j[) will becomenth, (n+1)th, and 6+2)th order poly- (1) A large number of grid pointgat least 2000 points de-
nomials, of ar?umer“:ri_rj”v times a common exponential pending on different energy cutoffis always needed to
factor e M ~"il. This simple functional form allows us to cover the entire energy spectra below the “dissociation
freely choose the integer to simplify the calculations, as |imit.” (2) The ghost energy levels frequently occur in the
seen in the 1D Morse potential case. In addition, a recursiofange of middle to high energy levels. It is difficult to rec-
relation can be established amongd,, »(llri—rjll),  ognize and discard them if there is mopriori knowledge
Ago(lri=rjl), andA 5, . o([|ri—r;[) in terms of the modified  about the correct energy spectra of the system under study.
Bessel function of the third kind. This will result in a further (3) The numerical resolution for degenerate energy levels are

reduction of computational work. at least four orders of magnitude lower than in the present
The numerical details with regard to the Henon-Heilescalculations.

potential proceed as follows§l) to cover all the bound-state
energy levels, the energy cutoff for the calculations is taken
to be E,= 13.838642 which is slightly larger than the “dis- IV. CONCLUSION

sociation energy”Eq=40/3=13; of the system.(2) The There are four remarkable features over the other existing
equilateral triangular grid domain is determined by this en-methods in using the Sobolev RK to numerically solve
ergy cutoff and grid points are distributed symmetrically andbound-state problems. First, a function can be optimally re-
uniformly. (3) For the fixed orderr—2=n+1/2, the param- covered from scattered data by Sobolev RK interpolation.
eterh in A (|[r—r'|) is determined such that all the result- This feature assures the robustness of the method. Second,
ing energy levels are on average the lowest among all ththe Sobolev RK has more flexibility to control the condition
calculations. In general, we have found that the calculatesiumber of the interpolation matrix through the adjustment of
energy levels are not very sensitive to the changk olver its differentiability determined by its order parameterThis
certain ranges. Table Ill lists the values of paramateised  feature asssures the stability and accuracy of the method.
in the calculations and the corresponding range within whichrhird, no special distribution for grid points and no tensor
the calculated energy levels differ at most in their fifth deci-product ansatz for multidimensions are required, thus, allow-
mal places. To investigate the convergence with respect timg for a judicious choice of grid points according to the
the order parametet—2=n+1/2 and the number of grid physical properties of the wave functions and potential under
points M, we have carried out a series of calculations withstudy as long as the condition number of the resulting inter-

(VHH)ijzaTM:L

1 2
X E(xi+xj)

20V (% Y1)+ V(X )+ 5

(YY) 2+ V(XY +Y)
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TABLE lll. Comparisons of the calculated eigenvalues for the Henon-Heiles potential.

State HL[13] DAF [18] Present work
n=17 n=20 n=22
M =595 M =595 M=1081
A=5.00~-5.50 A=5.40~7.80 A=6.00~8.50

3A; 3.982417 3.982417 3.982417 3.982417 3.982417
1A, 3.985761 3.985761 3.985761 3.985761 3.985761
5A; 5.867015 5.867015 5.867015 5.867015 5.867015
2A, 5.881447 5.881446 5.881446 5.881446 5.881446
3A, 6.998932 6.998932 6.998932 6.998932 6.998932
TA; 6.999387 6.999387 6.999387 6.999387 6.999387
8A, 7.697722 7.697721 7.697721 7.697721 7.697721
4A, 7.736884 7.736885 7.736885 7.736885 7.736885
5A, 8.811326 8.811327 8.811327 8.811327 8.811327
10A; 8.815189 8.815188 8.815188 8.815188 8.815188
11A, 9.466775 9.466773 9.466773 9.466773 9.466773
6A, 9.552382 9.552382 9.552382 9.552382 9.552382
12A, 10.035414 10.035413 10.035413 10.035413 10.035413
7A, 10.035594 10.035592 10.035592 10.035592 10.035592
8A, 10.572478 10.572480 10.572480 10.572480 10.572480
14A, 10.590478 10.590470 10.590470 10.590470 10.590470
15A; 11.160260 11.160259 11.160259 11.160258 11.160258
9A, 11.325231 11.325231 11.325232 11.325232 11.325231
16A; 11.749558 11.749518 11.749519 11.749518 11.749518
10A, 11.752298 11.752297 11.752297 11.752297 11.752297
11A, 12.277191 12.277192 12.277193 12.277192 12.277192
18A; 12.333799 12.333785 12.333781 12.333780 12.333778
19A, 12.748313 12.748423 12.748197 12.748195 12.748190
12A, 13.032057 13.032062 13.032064 13.032062 13.032061
32E 13.081194 13.081196 13.081196 13.081194 13.081192
13A, 13.086874 13.086873 13.086874 13.086873 13.086873
33E 13.233287 13.233250 13.233249 13.233249

polation matrix is numerically acceptable. This feature as-of the modified Bessel function of the third kind
sures the efficiency of the method. Finally, for generalK y_ . (\[r—r'[) [32]. Here we only list a few relevant
bound-state problems with a potential satisfyMig)—0 at  results.

[r|[—<°, the correct asymptotic behavior of solutions to the The functionA (||r—r’|) is analytic except afir—r’|
Schralinger equation has been explicitly built into the Sobo-=0 and for|r—r'||#0 it is an entire function ofa. Its
lev RK. In addition, the variational characteristic of the asymptotic properties ds—r'||—0, are

method avoids the occurrence of so-called ghost energy lev-

els which exist in the nonvariational methods such as DVR, ( I'((a—N)/2)
etc. The results of the above two examples showed that the if a>N,
order a of the Sobolev RKA ,(||r—r'||) can approximately 2NN\ *NE (al2)
be set equal to 16 such tha%_(V2+)\2)”’4¢(r) is square “log\r—r’[) .
integrable, i.e., the corresponding RKHS’s are composed of A ([r—r’|)~ TR o— if a=N,
at least 8 times continuously differentiable square-integrable 27 2T (N/2)
functions. Despite the Hamiltonian matrix not being sparse, T((N=a)2)(|r—r"[)eN
its diagonalization is efficient due to its low dimension. The if a<N.
evaluation of the potential matrix elemeMg in the present L 297N (al2)
method remains a numerical challenge when dealing with (A1)
general nonpolynomial potentials. For molecular bound-state
problems studies are underway. Similarly for [[r—r’||—o,
APPENDIX: , (\[[r=r/[)e-N=Drz N
MATHEMATICAL PROPERTIES OF A ’ Aollr=r'h— el
Lr=r" 2(atN=1)2 (N=1)/2) a=N( /)

Most of the fundamental properties of the Sobolev RK
(15) follow immediately from the corresponding properties for a>0. (A2)
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A (|r—r’]) is integrable for anyy>0 and any givem (or ) )
e, NI =AZ A = [ A8 (e =r])

(A5)

| v adie=r= | draudie=r =Ko -x—e.
R R

(A3) For fixedr’ andr#r’, an important differential relation-

ship between the Sobolev RK and the operaitr) exists

L . . as follows:
But it is not necessarily square integrable unlessN/2 for

any givenr (orr’), i.e.,
MDA L(r =1 =(=VE+ N2 A (Ir=r[)

N Ar Al =D Ag(llr =) =A24(0) =Aa—alr=r"]D. (A6)
( b
I'(a—=N/2) it a>N/2, As a corollary one has for all positive integer< /2
2N7TN/2)\2a7NF(CM)
—log(\[r) (= VN MA (=1 D=A4an(llr=r'lD. (A7)
={ lm——— if a=N/2, (A4
02N 1N (N/2) G
_ 2a—N It is obvious that the function ,,(||r —r’|) is a fundamental
. T(N2—a)|r] . : 25N 2
lim if a<<N/2. solution for the operator{ V=+x<)™.
\ r—0 22a,n_N/21"(a)
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